The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis
نویسندگان
چکیده
Inhalation of multiwalled carbon nanotubes (MWCNTs) during their manufacture or incorporation into various commercial products may cause lung inflammation, fibrosis, and oxidative stress in exposed workers. Some workers may be more susceptible to these effects because of differences in their ability to synthesize the major antioxidant and immune system modulator glutathione (GSH). Accordingly, in this study we examined the influence of GSH synthesis and gender on MWCNT-induced lung inflammation in C57BL/6 mice. GSH synthesis was impaired through genetic manipulation of Gclm, the modifier subunit of glutamate cysteine ligase, the rate-limiting enzyme in GSH synthesis. Twenty-four hours after aspirating 25µg of MWCNTs, all male mice developed neutrophilia in their lungs, regardless of Gclm genotype. However, female mice with moderate (Gclm heterozygous) and severe (Gclm null) GSH deficiencies developed significantly less neutrophilia. We found no indications of MWCNT-induced oxidative stress as reflected in the GSH content of lung tissue and epithelial lining fluid, 3-nitrotyrosine formation, or altered mRNA or protein expression of several redox-responsive enzymes. Our results indicate that GSH-deficient female mice are rendered uniquely susceptible to an attenuated neutrophil response. If the same effects occur in humans, GSH-deficient women manufacturing MWCNTs may be at greater risk for impaired neutrophil-dependent clearance of MWCNTs from the lung. In contrast, men may have effective neutrophil-dependent clearance, but may be at risk for lung neutrophilia regardless of their GSH levels.
منابع مشابه
High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots
The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs). High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...
متن کاملHigh temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots
The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs). High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...
متن کاملPreparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature
The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...
متن کاملSolid Phase Extraction of Amount Cu(II) Using C18 Disks Modified Schiff Base-Chitosan Grafted Multiwalled Carbon Nanotubes
A novel and selective method for the fast determination of trace amounts of Cu(II) ions in water samples has been developed. The procedure is based on the selective formation of Cu(II) at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISKTM disks modified Schiff base-ch...
متن کاملSynthesis and Application of Novel Modified Magnetic Nanocomposite for Solid Phase Extraction of Thallium(I) Ions
In this paper, magnetically multiwalled carbon nanotubes (MMWCNTs) nanocomposite modified by methyl-2-[2-(2-2-[2-(methoxycarbonyl) phenoxy] ethoxyethoxy) ethoxy] benzoate was applied for magnetic solid-phase extraction (MSPE) of thallium(I) ions. Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrometry and vibrat...
متن کامل